Systematic analysis of RBE and related quantities using a database of cell survival experiments with ion beam irradiation
نویسندگان
چکیده
For tumor therapy with light ions and for experimental aspects in particle radiobiology the relative biological effectiveness (RBE) is an important quantity to describe the increased effectiveness of particle radiation. By establishing and analysing a database of ion and photon cell survival data, some remarkable properties of RBE-related quantities were observed. The database consists of 855 in vitro cell survival experiments after ion and photon irradiation. The experiments comprise curves obtained in different labs, using different ion species, different irradiation modalities, the whole range of accessible energies and linear energy transfers (LETs) and various cell types. Each survival curve has been parameterized using the linear-quadratic (LQ) model. The photon parameters, α and β, appear to be slightly anti-correlated, which might point toward an underlying biological mechanism. The RBE values derived from the survival curves support the known dependence of RBE on LET, on particle species and dose. A positive correlation of RBE with the ratio α/β of the photon LQ parameters is found at low doses, which unexpectedly changes to a negative correlation at high doses. Furthermore, we investigated the course of the β coefficient of the LQ model with increasing LET, finding typically a slight initial increase and a final falloff to zero. The observed fluctuations in RBE values of comparable experiments resemble overall RBE uncertainties, which is of relevance for treatment planning. The database can also be used for extensive testing of RBE models. We thus compare simulations with the local effect model to achieve this goal.
منابع مشابه
Evaluation of variable relative biological effectiveness and the creation of homogenous biological dose in the tumor region in helium ion radiation to the V79 cell line
In radiation therapy, ions heavier than proton have more biological advantages than a proton beam. Recently, ion helium has been considered due to high linear energy transfer (LET) to the medium and a higher relative biological effect (RBE). To design the spread-out Bragg peak (SOBP) of biological dose for radiation with any type of ion, we need exact values of RBE, which is dependent to dose, ...
متن کاملComparison of Different Model Predictions on RBE in the Proton Therapy Technique Using the GATE Code
Recently, proton therapy is used as one of the effective methods for treating various types of cancer in clinical treatment. An appropriate formalism to obtain relative biological effectiveness values for treatment planning studies is needed in this hadrontherapy technique. Hereby, the quantity of biological dose, instead of using the physical doses, is introduced to evaluate the biological eff...
متن کاملData base of cell survival experiments for testing the Local Effect Model
One important rationale for tumor therapy with carbon ions is the enhanced relative biological effectiveness (RBE) compared to conventional photon therapy. As the RBE depends on many factors such as the LET distribution in a given depth in tissue, the delivered dose and the radiosensitivity of the cells or tissues under investigation, it can not be investigated experimentally for all relevant p...
متن کاملبررسی پاسخ رده های سلولی مختلف به میدان تابشی آمیخته حاصل از پرتودهی با یون هلیوم
Introdution: A careful study of the physical and biological properties of helium ion radiation on the various cell lines is essential for the treatment planning. In this study, the biological response of several different cell lines has been investigated in 4He ions. Methods: Physical dose profiles and Linear Energy Transfer (LET) calculations were performed using the Monte Carlo Geant4 code. ...
متن کاملInduction of cancer stem-like cells in A549 cells after exposure to carbon ions and X-rays
Background: Cancer stem-like cells (CSCs) play a crucial role in the initiation, progression, and recurrence of cancer. Evidence indicates that the high linear energy transfer (LET) carbon ion beam is more effective against CSCs than the conventional X-ray beam. Carbon ion radiotherapy is considered as a promising cancer strategy, however, information about whether, or not, new CSCs are induced...
متن کامل